3.189 \(\int \frac{1}{\cos ^{\frac{3}{2}}(c+d x) (b \cos (c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=78 \[ \frac{\sin (c+d x)}{2 b d \cos ^{\frac{3}{2}}(c+d x) \sqrt{b \cos (c+d x)}}+\frac{\sqrt{\cos (c+d x)} \tanh ^{-1}(\sin (c+d x))}{2 b d \sqrt{b \cos (c+d x)}} \]

[Out]

(ArcTanh[Sin[c + d*x]]*Sqrt[Cos[c + d*x]])/(2*b*d*Sqrt[b*Cos[c + d*x]]) + Sin[c + d*x]/(2*b*d*Cos[c + d*x]^(3/
2)*Sqrt[b*Cos[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.021936, antiderivative size = 78, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.13, Rules used = {18, 3768, 3770} \[ \frac{\sin (c+d x)}{2 b d \cos ^{\frac{3}{2}}(c+d x) \sqrt{b \cos (c+d x)}}+\frac{\sqrt{\cos (c+d x)} \tanh ^{-1}(\sin (c+d x))}{2 b d \sqrt{b \cos (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[1/(Cos[c + d*x]^(3/2)*(b*Cos[c + d*x])^(3/2)),x]

[Out]

(ArcTanh[Sin[c + d*x]]*Sqrt[Cos[c + d*x]])/(2*b*d*Sqrt[b*Cos[c + d*x]]) + Sin[c + d*x]/(2*b*d*Cos[c + d*x]^(3/
2)*Sqrt[b*Cos[c + d*x]])

Rule 18

Int[(u_.)*((a_.)*(v_))^(m_)*((b_.)*(v_))^(n_), x_Symbol] :> Dist[(a^(m - 1/2)*b^(n + 1/2)*Sqrt[a*v])/Sqrt[b*v]
, Int[u*v^(m + n), x], x] /; FreeQ[{a, b, m}, x] &&  !IntegerQ[m] && ILtQ[n - 1/2, 0] && IntegerQ[m + n]

Rule 3768

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Csc[c + d*x])^(n - 1))/(d*(n -
 1)), x] + Dist[(b^2*(n - 2))/(n - 1), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1
] && IntegerQ[2*n]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin{align*} \int \frac{1}{\cos ^{\frac{3}{2}}(c+d x) (b \cos (c+d x))^{3/2}} \, dx &=\frac{\sqrt{\cos (c+d x)} \int \sec ^3(c+d x) \, dx}{b \sqrt{b \cos (c+d x)}}\\ &=\frac{\sin (c+d x)}{2 b d \cos ^{\frac{3}{2}}(c+d x) \sqrt{b \cos (c+d x)}}+\frac{\sqrt{\cos (c+d x)} \int \sec (c+d x) \, dx}{2 b \sqrt{b \cos (c+d x)}}\\ &=\frac{\tanh ^{-1}(\sin (c+d x)) \sqrt{\cos (c+d x)}}{2 b d \sqrt{b \cos (c+d x)}}+\frac{\sin (c+d x)}{2 b d \cos ^{\frac{3}{2}}(c+d x) \sqrt{b \cos (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 0.0374828, size = 52, normalized size = 0.67 \[ \frac{\sin (c+d x)+\cos ^2(c+d x) \tanh ^{-1}(\sin (c+d x))}{2 d \sqrt{\cos (c+d x)} (b \cos (c+d x))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Cos[c + d*x]^(3/2)*(b*Cos[c + d*x])^(3/2)),x]

[Out]

(ArcTanh[Sin[c + d*x]]*Cos[c + d*x]^2 + Sin[c + d*x])/(2*d*Sqrt[Cos[c + d*x]]*(b*Cos[c + d*x])^(3/2))

________________________________________________________________________________________

Maple [A]  time = 0.167, size = 104, normalized size = 1.3 \begin{align*} -{\frac{1}{2\,d} \left ( \left ( \cos \left ( dx+c \right ) \right ) ^{2}\ln \left ( -{\frac{-1+\cos \left ( dx+c \right ) +\sin \left ( dx+c \right ) }{\sin \left ( dx+c \right ) }} \right ) - \left ( \cos \left ( dx+c \right ) \right ) ^{2}\ln \left ( -{\frac{-1+\cos \left ( dx+c \right ) -\sin \left ( dx+c \right ) }{\sin \left ( dx+c \right ) }} \right ) -\sin \left ( dx+c \right ) \right ){\frac{1}{\sqrt{\cos \left ( dx+c \right ) }}} \left ( b\cos \left ( dx+c \right ) \right ) ^{-{\frac{3}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/cos(d*x+c)^(3/2)/(b*cos(d*x+c))^(3/2),x)

[Out]

-1/2/d*(cos(d*x+c)^2*ln(-(-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))-cos(d*x+c)^2*ln(-(-1+cos(d*x+c)-sin(d*x+c))/si
n(d*x+c))-sin(d*x+c))/cos(d*x+c)^(1/2)/(b*cos(d*x+c))^(3/2)

________________________________________________________________________________________

Maxima [B]  time = 1.85117, size = 905, normalized size = 11.6 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cos(d*x+c)^(3/2)/(b*cos(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

-1/4*(4*(sin(4*d*x + 4*c) + 2*sin(2*d*x + 2*c))*cos(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) - 4*(sin(
4*d*x + 4*c) + 2*sin(2*d*x + 2*c))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) - (2*(2*cos(2*d*x + 2*
c) + 1)*cos(4*d*x + 4*c) + cos(4*d*x + 4*c)^2 + 4*cos(2*d*x + 2*c)^2 + sin(4*d*x + 4*c)^2 + 4*sin(4*d*x + 4*c)
*sin(2*d*x + 2*c) + 4*sin(2*d*x + 2*c)^2 + 4*cos(2*d*x + 2*c) + 1)*log(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2
*d*x + 2*c)))^2 + sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + 2*sin(1/2*arctan2(sin(2*d*x + 2*c),
 cos(2*d*x + 2*c))) + 1) + (2*(2*cos(2*d*x + 2*c) + 1)*cos(4*d*x + 4*c) + cos(4*d*x + 4*c)^2 + 4*cos(2*d*x + 2
*c)^2 + sin(4*d*x + 4*c)^2 + 4*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + 4*sin(2*d*x + 2*c)^2 + 4*cos(2*d*x + 2*c) +
 1)*log(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x +
 2*c)))^2 - 2*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 1) - 4*(cos(4*d*x + 4*c) + 2*cos(2*d*x +
2*c) + 1)*sin(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 4*(cos(4*d*x + 4*c) + 2*cos(2*d*x + 2*c) + 1)
*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))))/((b*cos(4*d*x + 4*c)^2 + 4*b*cos(2*d*x + 2*c)^2 + b*sin
(4*d*x + 4*c)^2 + 4*b*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + 4*b*sin(2*d*x + 2*c)^2 + 2*(2*b*cos(2*d*x + 2*c) + b
)*cos(4*d*x + 4*c) + 4*b*cos(2*d*x + 2*c) + b)*sqrt(b)*d)

________________________________________________________________________________________

Fricas [A]  time = 2.29512, size = 570, normalized size = 7.31 \begin{align*} \left [\frac{\sqrt{b} \cos \left (d x + c\right )^{3} \log \left (-\frac{b \cos \left (d x + c\right )^{3} - 2 \, \sqrt{b \cos \left (d x + c\right )} \sqrt{b} \sqrt{\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 2 \, b \cos \left (d x + c\right )}{\cos \left (d x + c\right )^{3}}\right ) + 2 \, \sqrt{b \cos \left (d x + c\right )} \sqrt{\cos \left (d x + c\right )} \sin \left (d x + c\right )}{4 \, b^{2} d \cos \left (d x + c\right )^{3}}, -\frac{\sqrt{-b} \arctan \left (\frac{\sqrt{b \cos \left (d x + c\right )} \sqrt{-b} \sin \left (d x + c\right )}{b \sqrt{\cos \left (d x + c\right )}}\right ) \cos \left (d x + c\right )^{3} - \sqrt{b \cos \left (d x + c\right )} \sqrt{\cos \left (d x + c\right )} \sin \left (d x + c\right )}{2 \, b^{2} d \cos \left (d x + c\right )^{3}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cos(d*x+c)^(3/2)/(b*cos(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

[1/4*(sqrt(b)*cos(d*x + c)^3*log(-(b*cos(d*x + c)^3 - 2*sqrt(b*cos(d*x + c))*sqrt(b)*sqrt(cos(d*x + c))*sin(d*
x + c) - 2*b*cos(d*x + c))/cos(d*x + c)^3) + 2*sqrt(b*cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c))/(b^2*d*co
s(d*x + c)^3), -1/2*(sqrt(-b)*arctan(sqrt(b*cos(d*x + c))*sqrt(-b)*sin(d*x + c)/(b*sqrt(cos(d*x + c))))*cos(d*
x + c)^3 - sqrt(b*cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c))/(b^2*d*cos(d*x + c)^3)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cos(d*x+c)**(3/2)/(b*cos(d*x+c))**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\left (b \cos \left (d x + c\right )\right )^{\frac{3}{2}} \cos \left (d x + c\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cos(d*x+c)^(3/2)/(b*cos(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate(1/((b*cos(d*x + c))^(3/2)*cos(d*x + c)^(3/2)), x)